Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(1R,4S)-(-)-3,3-Ethylenedioxy-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one

Grant A. Boyle, ${ }^{\text {a }}$ Thavendran Govender, ${ }^{\text {b* }}$ Hendrik G. Kruger $^{\text {a }}$ and Glenn E. M. Maguire ${ }^{\text {a }}$

${ }^{\text {a }}$ School of Chemistry, University of KwaZulu-Natal, Durban 4000, South Africa, and ${ }^{\mathbf{b}}$ School of Pharmacy and Pharmacology, University of KwaZulu-Natal, Durban 4000, South Africa
Correspondence e-mail: govenderthav@ukzn.ac.za
Received 23 July 2007; accepted 5 August 2007
Key indicators: single-crystal X-ray study; $T=223 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.039 ; w R$ factor $=0.112 ;$ data-to-parameter ratio $=11.4$.

The title compound, $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3}$, was synthesized from camphorquinone and ethylene glycol, with the stereochemistry assumed to be unchanged during the reaction. The molecule exhibits several $\mathrm{C}-\mathrm{C}$ bond lengths that differ significantly from the expected value of $1.54 \AA$.

Related literature

For related literature, see: Fleming \& Woodward (1968); Lachance et al. (2005).

Experimental

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3}$

$M_{r}=210.26$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=7.2169$ (8) \AA
$b=11.8122$ (14) \AA
$c=13.2986$ (15) \AA
$V=1133.7(2) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=223$ (2) K
$0.40 \times 0.33 \times 0.32 \mathrm{~mm}$

Data collection

Bruker SMART 1K CCD
1589 independent reflections 1469 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.039$

Absorption correction: none

8262 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.112$
$S=1.04$
1589 reflections

139 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.20 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.18 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{C} 1-\mathrm{C} 10$	$1.515(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.527(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.520(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.544(3)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.558(2)$	$\mathrm{C} 4-\mathrm{C} 7$	$1.562(3)$
$\mathrm{C} 1-\mathrm{C} 7$	$1.562(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.546(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.555(2)$	$\mathrm{C} 7-\mathrm{C} 9$	$1.522(3)$
$\mathrm{C} 2^{\prime}-\mathrm{C}^{\prime}$	$1.502(3)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.540(3)$

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Bruker, 1999); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank Dr Manuel Fernandes of the Jan Boeyens Structural Chemistry Laboratory of the University of the Witwatersrand for his assistance in the acquisition of the X-ray data. This work was supported by grants from the National Research Foundation (South Africa), GUN 2046819, and the University of KwaZulu-Natal.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2223).

References

Bruker (1998). SMART-NT. Version 5.050. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT-Plus (Version 6.02, includes XPREP and SADABS) and SHELXTL (Version 5.1, includes $X S, X L, X P$ and $X S H E L L$). Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Fleming, I. \& Woodward, R. B. (1968). J. Chem. Soc. C, 10, 1289-1291.
Lachance, H., St-Onge, M. \& Hall, D. G. (2005). J. Org. Chem. 70, 4180-4183.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

supplementary materials

(1R,4S)-(-)-3,3-Ethylenedioxy-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one

G. A. Boyle, T. Govender, H. G. Kruger and G. E. M. Maguire

Comment

The title compound was synthesized as an intermediate in an ongoing investigation into the synthesis of novel camphor-derived ligands for applications in asymmetric catalysis. The compound was first synthesized in 1968 (Fleming \& Woodward, 1968) but the crystal structure has not been reported until now.

The reaction of camphorquinone with ethylene glycol is known to give consistently a 3:1 ratio of the title compound with (1R,4S)-(-)-1,7,7-Trimethyl-2,2-ethylenedioxybicyclo-[2.2.1] heptan-3-one (Lachance et al., 2005). The crystal analysed contains only the title molecule, with no indication of the other in the structure.

The molecule (Fig. 1) exhibits some $\mathrm{C} — \mathrm{C}$ bonds that differ significantly from the expected $\mathrm{C}-\mathrm{C}$ bond length of $1.54 \AA$ (Table 1). The shortest bond is 1.502 (3) \AA A between C2' and C3'. The camphor skeleton also contains several bonds that are both shorter (e.g. $1.520(3) \AA$ for $\mathrm{C} 1 — \mathrm{C} 2)$ and longer (1.562 (3) \AA for $\mathrm{C} 1-\mathrm{C} 7$) than the expected value. There are numerous short $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{H} \cdots \mathrm{H}$ contacts in the structure (Fig. 2): atom O 1 interacts with the hydrogen of C 4 of one molecule while C 2 ' and C 3 ' interact with O 1 of a different neighbouring molecule (Fig. 3). The exo hydrogen on C 2 ' interacts with the hydrogen on C 5 of a neighbouring molecule and $\mathrm{O} 3^{\prime}$ interacts with one of the hydrogen atoms on C 10 of a different molecule.

Experimental

A solution of camphorquinone (1 mol eq .), ethylene glycol (1 mol eq .) and p-toluenesulphonic acid (catalytic amount) in benzene was refluxed in a Dean-Stark apparatus with water removed azeotropically. When TLC indicated the absence of the starting quinone, the reaction mixture was allowed to cool gradually to ambient temperature and washed sequentially with 10% aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{ml})$, water $(100 \mathrm{ml})$ and brine $(100 \mathrm{ml})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered, and the filtrate was concentrated in vacuo. The residue was purified via column chromatography on silica gel by eluting with EtOAc-hexane (5:95). The title compound was obtained in 80% yield as a colourless oil which crystallized on standing at room temperature overnight.

Refinement

All H atoms were visible in difference Fourier maps but were positioned geometrically with $\mathrm{C}-\mathrm{H}=0.97-0.99 \AA$ and allowed to ride during refinement with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$. In the absence of significant anomalous scattering effects, Friedel pairs have been merged as equivalent data.

supplementary materials

Figures

Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level for non-H atoms

Fig. 2. Packing diagram viewed along the a axis. H atoms have been omitted.

Fig. 3. Some intermolecular interactions involving O1.

(1R,4S)-(-)-1,7,7-Trimethyl-3,3-ethylenedioxybicyclo- [2.2.1]heptan-2-one

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3}$
$M_{r}=210.26$

Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Hall symbol: P 2ac 2ab
$a=7.2169$ (8) \AA
$b=11.8122(14) \AA$
$c=13.2986(15) \AA$
$V=1133.7(2) \AA^{3}$
$Z=4$

Data collection

Bruker SMART 1K CCD

diffractometer

Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=223(2) \mathrm{K}$

$$
\begin{aligned}
& F_{000}=456 \\
& D_{\mathrm{x}}=1.232 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Mo} K \alpha \text { radiation } \\
& \lambda=0.71073 \AA \\
& \text { Cell parameters from } 1017 \text { reflections } \\
& \theta=2.8-28.3^{\circ} \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=223(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.40 \times 0.33 \times 0.32 \mathrm{~mm}
\end{aligned}
$$

φ and ω scans

Absorption correction: none
8262 measured reflections
1589 independent reflections

$$
\begin{aligned}
& h=-9 \rightarrow 9 \\
& k=-15 \rightarrow 12 \\
& l=-17 \rightarrow 17
\end{aligned}
$$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.112$
$S=1.04$
1589 reflections
139 parameters
$(\Delta / \sigma)_{\max }=0.003$
$\Delta \rho_{\max }=0.20 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.18$ e \AA^{-3}

H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.068 P)^{2}+0.1693 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$

Extinction correction: none
Absolute structure: In the absence of significant anomalous scattering effects, Friedel pairs have been merged as equivalent data.
Primary atom site location: structure-invariant direct methods

Flack parameter: ?

Secondary atom site location: difference Fourier map Rogers parameter: ?
Hydrogen site location: inferred from neighbouring sites

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.8229(2)$	$0.77338(13)$	$0.19449(13)$	$0.0323(3)$
C2	$0.9155(2)$	$0.76727(14)$	$0.29698(13)$	$0.0329(3)$
C2'	$1.2832(3)$	$0.8104(2)$	$0.41436(16)$	$0.0573(6)$
H2'A	1.4154	0.8226	0.4272	0.069^{*}
H2'B	1.2461	0.7377	0.4436	0.069^{*}
C3'	$1.1691(4)$	$0.9056(2)$	$0.45635(16)$	$0.0567(6)$
H3'A	1.1030	0.8809	0.5169	0.068^{*}
H3'B	1.2484	0.9700	0.4739	0.068^{*}
C3	$1.0655(2)$	$0.86179(14)$	$0.29824(13)$	$0.0333(4)$
C4	$1.0357(3)$	$0.91661(15)$	$0.19549(14)$	$0.0401(4)$

H4	1.0829	0.9950	0.1899	0.048^{*}
C5	$1.1148(3)$	$0.83379(19)$	$0.11663(14)$	$0.0459(5)$
H5A	1.2399	0.8091	0.1349	0.055^{*}
H5B	1.1181	0.8685	0.0497	0.055^{*}
C6	$0.9764(3)$	$0.73396(16)$	$0.11993(13)$	$0.0369(4)$
H6A	1.0369	0.6649	0.1442	0.044^{*}
H6B	0.9242	0.7194	0.0531	0.044^{*}
C7	$0.8224(3)$	$0.90443(15)$	$0.17886(16)$	$0.0427(4)$
C8	$0.7617(5)$	$0.9401(2)$	$0.0724(2)$	$0.0728(9)$
H8A	0.6289	0.9301	0.0656	0.109^{*}
H8B	0.8250	0.8937	0.0231	0.109^{*}
H8C	0.7929	1.0191	0.0616	0.109^{*}
C9	$0.7022(3)$	$0.9669(2)$	$0.2549(2)$	$0.0650(7)$
H9A	0.7214	1.0478	0.2480	0.097^{*}
H9B	0.7358	0.9434	0.3223	0.097^{*}
H9C	0.5729	0.9492	0.2427	0.097^{*}
C10	$0.6429(3)$	$0.7079(2)$	$0.18675(19)$	$0.0533(5)$
H10A	0.6666	0.6282	0.1990	0.080^{*}
H10B	0.5912	0.7174	0.1200	0.080^{*}
H10C	0.5559	0.7361	0.2364	0.080^{*}
O1	$0.8851(3)$	$0.70281(13)$	$0.36499(10)$	$0.0561(4)$
O1'	$1.24417(18)$	$0.81368(14)$	$0.30867(11)$	$0.0475(4)$
O4'	$1.0419(2)$	$0.93654(12)$	$0.38033(11)$	$0.0476(4)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0302(7)$	$0.0312(7)$	$0.0356(8)$	$-0.0006(6)$	$-0.0002(7)$	$-0.0049(7)$
C2	$0.0372(8)$	$0.0313(7)$	$0.0301(7)$	$0.0029(6)$	$0.0059(7)$	$-0.0033(6)$
C2 $^{\prime}$	$0.0568(12)$	$0.0747(15)$	$0.0403(10)$	$0.0140(12)$	$-0.0162(10)$	$-0.0062(10)$
C3'	$0.0703(15)$	$0.0578(12)$	$0.0421(10)$	$0.0059(12)$	$-0.0205(11)$	$-0.0124(9)$
C3	$0.0336(8)$	$0.0341(8)$	$0.0322(8)$	$0.0018(6)$	$-0.0031(7)$	$-0.0029(7)$
C4	$0.0474(10)$	$0.0336(8)$	$0.0393(9)$	$-0.0089(8)$	$-0.0073(8)$	$0.0063(8)$
C5	$0.0470(10)$	$0.0597(11)$	$0.0308(8)$	$-0.0130(10)$	$0.0050(8)$	$0.0043(8)$
C6	$0.0399(8)$	$0.0416(9)$	$0.0291(7)$	$-0.0003(7)$	$0.0033(7)$	$-0.0038(7)$
C7	$0.0473(10)$	$0.0319(8)$	$0.0490(10)$	$0.0069(8)$	$-0.0173(9)$	$-0.0017(8)$
C8	$0.098(2)$	$0.0494(12)$	$0.0709(16)$	$0.0102(14)$	$-0.0461(16)$	$0.0083(12)$
C9	$0.0532(13)$	$0.0539(12)$	$0.0878(18)$	$0.0232(11)$	$-0.0220(13)$	$-0.0287(13)$
C10	$0.0382(9)$	$0.0609(12)$	$0.0607(13)$	$-0.0116(9)$	$0.0042(10)$	$-0.0184(11)$
O1	$0.0811(11)$	$0.0519(8)$	$0.0352(7)$	$-0.0124(8)$	$0.0127(7)$	$0.0070(6)$
O1'	$0.0347(6)$	$0.0703(10)$	$0.0375(7)$	$0.0123(7)$	$-0.0063(6)$	$-0.0071(7)$
O4'	$0.0559(8)$	$0.0447(7)$	$0.0421(7)$	$0.0105(6)$	$-0.0136(7)$	$-0.0155(6)$

Geometric parameters $\left({ }_{A},{ }^{\circ}\right)$

$\mathrm{C} 1-\mathrm{C} 10$	$1.515(2)$	$\mathrm{C} 4-\mathrm{H} 4$	0.990
$\mathrm{C} 1-\mathrm{C} 2$	$1.520(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.546(3)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.558(2)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.980
$\mathrm{C} 1-\mathrm{C} 7$	$1.562(2)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	0.980

sup-4

supplementary materials

C2-O1	1.202 (2)
C2-C3	1.555 (2)
C2'-O1'	1.434 (3)
C2'-C3'	1.502 (3)
C2'-H2'A	0.980
C2'-H2'B	0.980
C3'-O4'	1.413 (3)
C3'-H3'A	0.980
C3'-H3'B	0.980
C3-O4'	1.414 (2)
C3-O1'	1.416 (2)
C3-C4	1.527 (3)
C4-C5	1.544 (3)
C4-C7	1.562 (3)
C10-C1-C2	114.44 (16)
C10-C1-C6	114.42 (15)
C2-C1-C6	104.10 (13)
C10-C1-C7	119.68 (16)
C2- $\mathrm{C} 1-\mathrm{C} 7$	99.64 (13)
C6-C1-C7	102.31 (15)
O1-C2-C1	128.63 (17)
O1-C2-C3	125.01 (17)
C1-C2-C3	106.36 (14)
O1'- C^{\prime} - $\mathrm{C} 3^{\prime}$	103.67 (18)
O1'- ${ }^{\prime} 2^{\prime}-\mathrm{H} 2{ }^{\prime} \mathrm{A}$	111.0
C3'-C2'-H2'A	111.0
O1'-C2'-H2'B	111.0
C3'-C2'-H2'B	111.0
H2'A-C2'-H2'B	109.0
$\mathrm{O} 4^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C} 2^{\prime}$	106.49 (16)
O4'- ${ }^{\prime} 3^{\prime}-\mathrm{H} 3^{\prime} \mathrm{A}$	110.4
C2'-C3'-H3'A	110.4
O4'- ${ }^{\prime} 3^{\prime}-\mathrm{H} 3^{\prime} \mathrm{B}$	110.4
C2'-C3'-H3'B	110.4
H3'A-C3'-H3'B	108.6
O4'-C3-O1'	106.51 (14)
$\mathrm{O} 4{ }^{\prime}-\mathrm{C} 3-\mathrm{C} 4$	114.15 (14)
O1'-C3-C4	112.71 (16)
$\mathrm{O} 4{ }^{\prime}-\mathrm{C} 3-\mathrm{C} 2$	111.90 (15)
O1'-C3-C2	110.28 (14)
C4-C3-C2	101.35 (14)
C3-C4-C5	106.68 (15)
C3-C4-C7	103.09 (16)
C5-C4-C7	102.12 (15)
C3-C4-H4	114.5
C5-C4-H4	114.5
C7-C4-H4	114.5
C4-C5-C6	103.02 (15)
C4-C5-H5A	111.2

C6-H6A	0.980
C6-H6B	0.980
C7-C9	1.522 (3)
C7-C8	1.540 (3)
C8-H8A	0.970
C8-H8B	0.970
C8-H8C	0.970
C9-H9A	0.970
C9-H9B	0.970
C9-H9C	0.970
C10-H10A	0.970
C10-H10B	0.970
C10-H10C	0.970
C4-C5-H5B	111.2
C6-C5-H5B	111.2
H5A-C5-H5B	109.1
C5-C6-C1	104.45 (14)
C5-C6-H6A	110.9
C1-C6-H6A	110.9
C5-C6-H6B	110.9
C1-C6-H6B	110.9
H6A-C6-H6B	108.9
C9-C7-C8	108.39 (19)
C9-C7-C4	115.01 (17)
C8-C7-C4	112.7 (2)
C9-C7-C1	113.15 (19)
C8-C7-C1	113.22 (17)
C4-C7-C1	94.02 (14)
C7-C8-H8A	109.5
C7-C8-H8B	109.5
H8A-C8-H8B	109.5
C7-C8- H 8 C	109.5
H8A-C8-H8C	109.5
H8B-C8-H8C	109.5
C7-C9-H9A	109.5
C7-C9-H9B	109.5
H9A-C9-H9B	109.5
C7-C9-H9C	109.5
H9A-C9-H9C	109.5
H9B-C9-H9C	109.5
C1-C10-H10A	109.5
C1-C10-H10B	109.5
H10A-C10-H10B	109.5
$\mathrm{C} 1-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	109.5
H10A-C10-H10C	109.5
H10B-C10-H10C	109.5
C3-O1'- 2^{\prime}	106.62 (15)
C3'-O4'-C3	108.23 (15)

supplementary materials

- $65-\mathrm{H} 5 \mathrm{~A}$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$
$\mathrm{C} 10-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$
C6-C1-C2-C3
C7-C1-C2-C3
O1'-C2'-C3'-O4'
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 4$
O1-C2-C3-O1'
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 1^{\prime}$
O1-C2-C3-C4
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$
${ }^{\prime}-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$
O1'-C3-C4-C5

O 4 - $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 7$
O 1 - $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 7$
C2-C3-C4-C7
C3-C4-C5-C6
C7-C4-C5-C6

C10-C1-C6-C5
C2-C1-C6-C5
111.2
15.0 (3)
-110.6 (2)
144.0 (2)
-165.94 (15)
68.44 (16)
-36.97 (17)
14.3 (3)
-56.3 (2)
124.53 (15)
62.0 (2)
-117.10 (15)
-178.37 (18)
2.50 (17)
165.71 (15)
44.03 (19)
-73.83 (17)
-87.15 (18)
151.17 (15)
33.31 (17)
69.78 (18)
-38.04 (19)
4.21 (19)
161.92 (17)
-72.45 (17)

C7-C1-C6-C5
C3-C4-C7-C9
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 7-\mathrm{C} 9$
C3-C4-C7-C8
C5-C4-C7-C8
C3-C4-C7-C1
C5-C4-C7-C1
C10-C1-C7-C9
C2-C1-C7-C9
C6-C1-C7-C9
$\mathrm{C} 10-\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8$
C6- $\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8$
C10-C1-C7-C4
C2- $\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 4$
C6-C1-C7-C4
O4'-C3-O1'-C2'
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{O} 1^{\prime}-\mathrm{C} 2^{\prime}$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 1^{\prime}-\mathrm{C} 2^{\prime}$
C3'-C2'-O1'-C3
C2'-C3'-O4'-C3
O1'-C3-O4'-C3'
C4-C3-O4'-C3'
C2-C3-O4'-C3'
30.94 (18)
62.7 (2)
173.32 (18)
-172.37 (16)
-61.8 (2)
-55.13 (17)
55.44 (17)
60.8 (2)
-64.69 (19)
-171.54 (15)
-63.1 (3)
171.5 (2)
64.6 (2)
-179.83 (17)
54.72 (16)
-52.14 (16)
29.8 (2)
155.70 (17)
-91.8 (2)
-26.8 (2)
3.4 (3)
-20.3 (2)
-145.36 (18)
100.3 (2)

Fig. 1

supplementary materials

Fig. 2

Fig. 3

